Tema 6 (I). Álgebra

Resumen

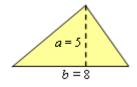
<u>Una expresión algebraica</u> es aquella en la que aparecen números y letras, unidos por las operaciones habituales.

<u>El álgebra</u> utiliza esas expresiones para establecer relaciones de carácter genérico, pues las letras pueden tomar cualquier valor.

• El álgebra permite dar fórmulas generales.

Ejemplos:

a) El área de un triángulo es $A = \frac{b \cdot a}{2}$, siendo b la base y a la altura.



Si la base mide 8 y altura 5, el área del triángulo es: $A = \frac{8.5}{2} = 20$.

b) En el tema de porcentajes se dio la fórmula $C_F = C \cdot (1+r)$, que da el precio final de cualquier producto que vale C y aumenta un r por uno. Así, si ese aumento fuese del 15 % (r=0.15), el valor aumentado será $C_F = C \cdot (1+0.15) \Rightarrow C_F = 1.15C$.

Si
$$C = 240 \in$$
, $C_F = 1,15.240 = 276 \in$.

- El álgebra permite expresar propiedades generales. Así, para indicar que una operación, por ejemplo, la suma, cumple la propiedad conmutativa, se escribe: a+b=b+a.
- El álgebra permite manejar números de valor desconocido.

Ejemplos:

Si con la letra *x* se designa un número desconocido, entonces:

a) El doble de x es 2x, que significa $2 \cdot x$. Por tanto, si x valiese 8, 2x valdría 16.

b) La mitad de x es $x: 2 = \frac{x}{2}$ \rightarrow Si x valiese 100, $\frac{x}{2}$ valdría 50.

c) El cuadrado de x es x^2 , que significa $x \cdot x \rightarrow \sin x$ valiese 7, $x^2 = 7^2 = 49$.

d) La suma 2x + 5x es igual a 7x. Igualmente: $\frac{1}{3}x + \frac{7}{3}x = \frac{8}{3}x$; y $x - \frac{x}{3} = \frac{x}{1} - \frac{x}{3} = \frac{3x}{3} - \frac{x}{3} = \frac{2x}{3}$.

• El álgebra permite establecer relaciones entre números. Así, para indicar que dos números son consecutivos se les da valores x y x + 1.

Monomios

Son las expresiones algebraicas más simples. Sólo tienen un término.

Un término es: un número; una letra; o un producto de números por letras.

Ejemplos:

a) Cualquier número es un término. Así, 8, -3 o $\frac{4}{3}$ son términos, que por no poder variar se

llaman constantes; son términos independientes.

b) Cualquier letra es un término. Así, a, b o x son términos.

c) Cualquier producto de números por letras es un término. Así, $3 \cdot a$, $-4 \cdot a \cdot x$ o $x \cdot x$ son términos. Esos términos suelen escribirse omitiendo los puntos de multiplicar. Esto es:

$$3 \cdot a = 3a$$
, $-4 \cdot a \cdot x = -4ax$ o $x \cdot x = x^2$.

d) La expresión $2a^2b-4b+5$ no es un monomio, pues está formada por tres términos. Por tanto, si hay sumas o restas la expresión no es un monomio. Se llamará polinomio.

• En un monomio, al número se le llama coeficiente; a la letra o letras que lo multiplican se le llama parte literal.

Ejemplo:

La parte literal de 3a, -4ax y x^2 es, respectivamente, a, ax y x^2 . Sus coeficientes, también respectivamente, son: 3, -4 y 1.

Observa que cuando la parte literal no lleva número, su coeficiente es 1; y si va sola con signo negativo, su coeficiente es -1. No se ponen por comodidad. Así, los coeficientes de $-ab^2$ v de x^3 son, respectivamente, -1 y 1.

• Valor numérico de un monomio es el valor que se obtiene cuando se sustituyen las letras por números.

Ejemplos:

- a) Si a = 3 y b = -2, el valor numérico de $-ab^2$ es $-3 \cdot (-2)^2 = -3 \cdot 4 = -12$.
- b) Si a = -2 y b = 5, el valor numérico de $-4ab^2$ es $-4(-2)\cdot 5^2 = 8\cdot 25 = 200$.
- El grado de un monomio es el grado de la parte literal, que es la suma de los grados de las letras que la forman.

Ejemplos:

El grado de 3a es 1; el grado de x^2 es 2; el grado de $2a^2b$ es 3; el de $-a^2x^3$ es 5.

Dos monomios son semejantes cuando tienen la misma parte literal.

Ejemplos:

- a) Los monomios 3a y 5a son semejantes.
- b) También son semejantes los monomios: x^2 y $6x^2$; y $-2a^2b$ y $3a^2b$.
- c) No son semejantes: 3a y 2ab. Tampoco lo son $2x^2 y 3x$.

Suma y resta de monomios

Solo pueden sumarse o restarse los monomios semejantes.

Cuando dos monomios no son semejantes, no pueden agruparse; la operación se deja indicada.

Ejemplos:

- a) Los monomios 3a y 5a pueden sumarse y restarse. Esto es, pueden hacerse las operaciones: 3a + 5a y 3a - 5a.
- b) Los monomios $2x^2$ y 3x no pueden sumarse ni restarse. Las operaciones $2x^2 + 3x$ y $2x^2 - 3x$ no pueden realizarse, se dejan así.
- Para sumar (o restar) monomios se suman (o restan) los coeficientes y se deja la misma parte literal.

Ejemplos:

- a) 3a+5a=(3+5)a=8a; b) 3a-5a=(3-5)a=-2a; c) 2x+7x-5x=4x.
- d) $2x^2 + 3x$ se deja indicada, como está. e) 2x + 7x 5 = 9x 5.
- La suma y resta de expresiones algebraicas cumplen las mismas propiedades que la suma y resta de números. Habrá que tener en cuenta las reglas de los signos.

Ejemplos:

- a) 2a + 7a = 7a + 2a;
- b) 5a (a 3a) = 5a (-2a) = 5a + 2a = 7a.

Producto de monomios

Pueden multiplicarse cualquier tipo de monomios entre sí.

Para multiplicar dos monomios se multiplican números por números y letras por letras.

Ejemplos:

a)
$$(3a)(5a) = (3.5)(a.a) = 15a^2$$
;

a)
$$(3a)(5a) = (3.5)(a \cdot a) = 15a^2$$
; b) $(3a)(-5a) = (3\cdot(-5))(a \cdot a) = -15a^2$;

c)
$$x \cdot x \cdot x = x^3$$
;

d)
$$(2x^2)(3x) = 2 \cdot 3 \cdot x^2 \cdot x = 6x^3$$
.

División de monomios

Pueden dividirse cualquier tipo de monomios entre sí.

Para dividir dos monomios se dividen "números entre números y letras entre letras". La parte de la expresión que no pueda simplificarse se dejará indicada en forma de fracción

Ejemplos:

a)
$$\frac{12a^2}{3a} = \frac{12}{3} \cdot \frac{a^2}{a} = 4a$$
;

a)
$$\frac{12a^2}{3a} = \frac{12}{3} \cdot \frac{a^2}{a} = 4a$$
; b) $\frac{10a^2b}{15ab^3} = \frac{10}{15} \cdot \frac{a^2}{a} \cdot \frac{b}{b^3} = \frac{2}{3} \cdot a \cdot \frac{1}{b^2} = \frac{2a}{3b^2}$;

c)
$$\frac{5x^2}{15x} = \frac{5}{15} \cdot \frac{x^2}{x} = \frac{1}{5}x = \frac{x}{5}$$
;

c)
$$\frac{5x^2}{15x} = \frac{5}{15} \cdot \frac{x^2}{x} = \frac{1}{5}x = \frac{x}{5}$$
; d) $\frac{-10x^2y}{5xy^2} = \frac{-10}{5} \cdot \frac{x^2}{x} \cdot \frac{y}{y^2} = -2x \cdot \frac{1}{y} = -\frac{2x}{y}$.

Ejercicios y Problemas

- 1. Dibuja un rectángulo de base b y altura a. Indica las expresiones algebraicas que dan el área y el perímetro de ese rectángulo. ¿Cuál será el valor numérico de esas expresiones cuando a =2 y b = 7 cm?
- 2. Indica mediante una expresión algebraica las siguientes relaciones:
 - a) La suma de dos números es 34.
- b) Un número es tres unidades mayor que otro.
- c) Un número más su consecutivo.
- d) El triple de un número vale 51.
- **3.** Indica mediante una expresión algebraica las siguientes situaciones:
- a) La suma de dos números consecutivos vale 71.
- b) Un padre tiene cuatro veces la edad de su hijo y entre ambos suman 45 años.
- c) Un número más su cuadrado suman 20.
- d) La base de un rectángulo es doble que su altura. Expresa su área y su perímetro.
- e) Un supermercado sube los precios un 4 %. Da la expresión de los nuevos precios si los anteriores eran x.
- f) Las rebajas son de un 40 %. Da el valor de los precios rebajados si los anteriores eran x.
- **4**. Indica el coeficiente y la parte literal de los siguientes monomios:

b)
$$-x^{3}$$

c)
$$\frac{4x^2y}{3}$$

d)
$$5x^2$$

5. Indica si son semejantes o no los siguientes pares de monomios:

a)
$$-3a$$
 y $2a$ b) $4a^3$ y $4a$

b)
$$4a^3$$
 y $4a^3$

c)
$$-x^2 y \frac{4x^2}{3}$$

d)
$$2x^3$$
 y $3x^2$

6. Suma o resta, en los casos que sea posible:

a)
$$5a - 3a + 8a$$

a)
$$5a-3a+8a$$
 b) $5a-(6a-2a)$

c)
$$2x - 3x$$

d)
$$3x^2 - x^2$$

e)
$$2x^2 + 3x^3$$

e)
$$2x^2 + 3x^3$$
 f) $\frac{7}{3}x - \frac{2}{9}x$ g) $x^2 - \frac{x^2}{3}$

g)
$$x^2 - \frac{x^2}{3}$$

h)
$$10x - 2x + 5$$

7. Simplifica, sumando y restando cuando se pueda:

a)
$$5x + 7x - 4x$$

a)
$$5x+7x-4x$$
 b) $3a^2-(5a^2-3a^2)$

c)
$$5x-3x+7$$

d)
$$3x^2 + 6x - 3x$$

d)
$$3x^2 + 6x - 3x$$
 e) $2x^2 - 5x - 3x^3 + 4x$ f) $\frac{3}{5}x - \frac{1}{2}x$

f)
$$\frac{3}{5}x - \frac{1}{2}x$$

8. Simplifica, agrupando los términos semejantes:

a)
$$3a + 5a - (4a - 3)$$

a)
$$3a + 5a - (4a - 3)$$
 b) $3x - 5x^2 - (2x^2 + 3x)$ c) $5x - (3x - 6) - 4$

c)
$$5x - (3x - 6) - 4$$

9. Multiplica, haciendo las operaciones paso a paso:

a)
$$5 \cdot (3a^2)$$

b)
$$(-3)(-5a)$$

c)
$$4\cdot(2a)\cdot(-a^2)$$

d)
$$3.(5x^2)$$

e)
$$4 \cdot (3-4x)$$

f)
$$(-2)(-ab^2)$$

g)
$$(3a^2)(7a)$$

a)
$$5 \cdot (3a^2)$$
 b) $(-3)(-5a)$ c) $4 \cdot (2a)(-a^2)$ d) $3 \cdot (5x^2)$ e) $4 \cdot (3-4x)$ f) $(-2)(-ab^2)$ g) $(3a^2)(7a)$ h) $(2x)(3x^2)(x^3)$

10. Simplifica, indicando los pasos intermedios, las siguientes expresiones:

a)
$$\frac{18a}{3b}$$

b)
$$\frac{12x^2}{4x}$$

c)
$$\frac{8x^2y}{3xy}$$

d)
$$\frac{21x}{3}$$

e)
$$\frac{18x^5}{4x^2}$$

e)
$$\frac{18x^5}{4x^2}$$
 f) $\frac{14x^2 - 6x^2}{2x}$ g) $\frac{4x^2 + 4x}{4x}$ h) $\frac{8x^2 - 6x}{2x}$

$$g) \frac{4x^2 + 4x}{4x}$$

h)
$$\frac{8x^2 - 6x}{2x}$$

Soluciones.

1. a) $A = b \cdot a$; $P = 2b + 2a \cdot 14 \text{ cm}^2$; 18 cm.

2. a) a+b=34. b) y=x+3. c) x+(x+1). d) 3x=51.

3. a) x + (x+1) = 71. b) Hijo $\rightarrow x$; padre $\rightarrow 4x$. x + 4x = 45. c) $x + x^2 = 20$.

d) Si la altura es h, la base es 2h. Área: $2h^2$; perímetro: 6h.

e) Precio nuevo: 1,04x. f) Precio rebajado: 0,6x.

4. a) 5 y ab. b) -1 y x^3 . c) $\frac{4}{2}$ y x^2 y. d) 5 y x^2 . **5.** Son semejantes: a) y c).

6. a) 10a. b) a. c) -x. d) $2x^2$. f) $\frac{19}{9}x$. g) $\frac{2x^2}{3}$. h) 8x+5.

7. a) 8x. b) a^2 . c) 2x+7. d) $3x^2+3x$. e) $-x^2-x$. f) $\frac{1}{10}x$. 8. a) 4a+3. b) $-3x^2$. c) 2x+2.

9. a) $15a^2$. b) 15a. c) $-8a^3$. d) $15x^2$. e) 12-16x. f) $2ab^2$. g) $21a^3$. h) $6x^6$.

10. a) $\frac{6a}{b}$. b) 3x. c) $\frac{8x}{3}$. d) 7x. e) $\frac{9x^3}{2}$. f) $\frac{8x^2}{2x} = 4x$.

g) $\frac{4x^2}{4x} + \frac{4x}{4x} = x + 1$. h) $\frac{8x^2}{2x} - \frac{6x}{2x} = 4x - 3$.